首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33607篇
  免费   16153篇
  国内免费   2篇
  2023年   48篇
  2022年   111篇
  2021年   562篇
  2020年   2252篇
  2019年   3802篇
  2018年   3948篇
  2017年   4197篇
  2016年   4278篇
  2015年   4336篇
  2014年   3996篇
  2013年   4475篇
  2012年   2339篇
  2011年   1980篇
  2010年   3361篇
  2009年   2066篇
  2008年   1076篇
  2007年   642篇
  2006年   617篇
  2005年   660篇
  2004年   602篇
  2003年   599篇
  2002年   552篇
  2001年   406篇
  2000年   330篇
  1999年   267篇
  1998年   119篇
  1997年   80篇
  1996年   78篇
  1995年   81篇
  1994年   95篇
  1993年   82篇
  1992年   115篇
  1991年   101篇
  1990年   109篇
  1989年   101篇
  1988年   106篇
  1987年   90篇
  1986年   91篇
  1985年   87篇
  1984年   85篇
  1983年   60篇
  1982年   67篇
  1981年   50篇
  1980年   52篇
  1979年   47篇
  1978年   42篇
  1977年   51篇
  1976年   50篇
  1975年   41篇
  1973年   49篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
61.
62.
J V Garcia  B W Fenton  M R Rosner 《Biochemistry》1988,27(12):4237-4244
An insulin-degrading enzyme (IDE) from the cytoplasm of Drosophila Kc cells has been purified and characterized. The purified enzyme is a monomer with an s value of 7.2 S, an apparent Km for porcine insulin of 3 microM, and a specific activity of 3.3 nmol of porcine insulin degraded/(min.mg). N-Terminal sequence analysis of the gel-purified enzyme gave a single, serine-rich sequence. The Drosophila IDE shares a number of properties in common with its mammalian counterpart. The enzyme could be specifically affinity-labeled with [125I]insulin, has a molecular weight of 110K, and has a pI of 5.3. Although Drosophila Kc cells grow at room temperature, the optimal enzyme activity assay conditions parallel those of the mammalian IDE: 37 degrees C and a pH range of 7-8. The Drosophila IDE activity, like the mammalian enzymes, is inhibited by bacitracin and sulfhydryl-specific reagents. Similarly, the Drosophila IDE activity is insensitive to glutathione as well as protease inhibitors such as aprotinin and leupeptin. Insulin-like growth factor II, equine insulin, and porcine insulin compete for degradation of [125I]insulin at comparable concentrations (approximately 10(-6) M), whereas insulin-like growth factor I and the individual A and B chains of insulin are less effective. The high degree of evolutionary conservation between the Drosophila and mammalian IDE suggests an important role for this enzyme in the metabolism of insulin and also provides further evidence for the existence of a complete insulin-like system in invertebrate organisms such as Drosophila.  相似文献   
63.
64.
65.
66.
Wing geometry helps to identify mosquito species, even cryptic ones. On the other hand, temperature has a well‐known effect on insect metric properties. Can such effects blur the taxonomic signal embedded in the wing? Two strains of Aedes albopictus (laboratory and field strain) were examined under three different rearing temperatures (26, 30 and 33 °C) using landmark‐ and outline‐based morphometric approaches. The wings of each experimental line were compared with Aedes aegypti. Both approaches indicated similar associations between wing size and temperature. For the laboratory strain, the wing size significantly decreased as the temperature increased. For the field strain, the largest wings were observed at the intermediate temperature. The two morphometric approaches describing shape showed different sensibilities to temperature. For both strains and sexes, the landmark‐based approach disclosed significant wing shape changes with temperature changes. The outline‐based approach showed lesser effects, detecting significant changes only in laboratory females and in field males. Despite the size and shape changes induced by temperature, the two strains of Ae. albopictus were always distinguished from Ae. aegypti. The present study confirms the lability of size. However, it also suggests that, despite environmentally‐induced variation, the architecture of the wing still provides a strong taxonomic signal.  相似文献   
67.
The human milk microbiome is vertically transmitted to offspring during the postnatal period and has emerged as a critical driver of infant immune and metabolic development. Despite this importance in humans, the milk microbiome of nonhuman primates remains largely unexplored. This dearth of comparative work precludes our ability to understand how species‐specific differences in the milk microbiome may differentially drive maternal effects and limits how translational models can be used to understand the role of vertically transmitted milk microbes in human development. Here, we present the first culture‐independent data on the milk microbiome of a nonhuman primate. We collected milk and matched fecal microbiome samples at early and late lactation from a cohort of captive lactating vervet monkeys (N = 15). We found that, similar to humans, the vervet monkey milk microbiome comprises a shared community of taxa that are universally present across individuals. However, unlike in humans, this shared community is dominated by the genera Lactobacillus, Bacteroides, and Prevotella. We also found that, in contrast to previous culture‐dependent studies in humans, the vervet milk microbiome exhibits greater alpha‐diversity than the gut microbiome across lactation. Finally, we did not find support for the translocation of microbes from the gut to the mammary gland within females (i.e., “entero‐mammary pathway”). Taken together, our results show that the vervet monkey milk microbiome is taxonomically diverse, distinct from the gut microbiome, and largely stable. These findings demonstrate that the milk microbiome is a unique substrate that may selectively favor the establishment and persistence of particular microbes across lactation and highlights the need for future experimental studies on the origin of microbes in milk.  相似文献   
68.
The hydroosmotic responses induced by oxytocin and 8-bromo-cyclic AMP, in frog and toad urinary bladders, were recorded minute by minute. 3HHO and 45Ca unidirectional fluxes as well as prostaglandin B2 liberation were also measured. It was observed that: (1) Addition of the calcium ionophore A23187 or quinidine to the serosal bath inhibited the response to oxytocin, but not to 8-bromo-cyclic AMP, while increasing prostaglandin E1 liberation into the serosal but not into the mucosal bath. (2) Addition of A23187 to the mucosal bath induced a transient and temperature-dependent inhibition of the response elicited by 8-bromo-cyclic AMP. The time-course of this reduction in water permeability and its sensitivity to medium temperature were similar to those observed after the withdrawal of agonist, but clearly different of those observed after intracellular acidification. (3) The hydroosmotic response was also transitorily inhibited when the Ca2+ concentration was step-changed in the mucosal bath. (4) When added to the mucosal or to the serosal baths, the ionophore increased either the apical or the laterobasal Ca2+ permeabilities. It is concluded that manipulation of intracellular Ca2+ interferes with the hydroosmotic response at two different levels. (1) A first target point located 'pre-cyclic-AMP production'. This effect would be mediated by prostaglandin liberation. (2) A second target point located after cyclic AMP production and before the 'temperature-dependent rate-limiting step'. This effect is probably related to the mechanism controlling the insertion and removal of water channels.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号